REMOTE LEARNING SYSTEM MODEL FOR ROBOT PROGRAMMING

Authors

DOI:

https://doi.org/10.25128/2415-3605.22.2.4

Keywords:

distance learning, distance learning system, robotics, adaptive education

Abstract

The article present the model of the system for remote learning of robot programming, It is built on the basis of the core of the platform, which consists of four layers: the infrastructure layer contains elements that are necessary for the functioning of the ecosystem, and features of the placement of the hardware of this system relative to each other; the hardware layer is a set of devices that make up the hardware configuration of the system: robots, computers which they are connected to, web cameras which are to display the positions of all functional nodes of the robot in detail; the software layer, which includes software tools that support the display of several webcams, an environment for programming and code compilation; the communication layer, which includes the communication channels between the robot and the computer, which will be accessed remotely, as well as the computer’s access to the Internet. The implementation of the model is to be carried out in the following directions: information and consultation; educational one; popularization of robotics and scientific and technical creativity; equipping resource centers divided into functional and technological zones; technological one. The advantages of remote as an element of adaptive education, which enables a student to remotely connect to a class or classroom through specific software, are revealed. The views of scientists regarding the problems of distance learning as an element of adaptive education are analyzed. When studying robotics, it was found that scientists mostly pay attention to the use of Internet services, virtual learning environments, robotics as a promising direction for the development of STEM education or analyze certain control systems, but practically do not focus on remote learning. In practice, the specified model will be implemented through a connection to a computer located in the classroom of the educational institution using a remote access system, on the desktop of which the robot will be displayed from two angles. It also displays the environment for writing and compiling the C++ programming language used for programming the robot directly, and after compiling the code, the user can immediately check the result of the code. In this way, a remote workplace will be created, to which students will be able to connect to perform laboratory classes, and visually observe the results of their work using video communication tools. Practical implementation of the model of remote learning of robot programming was ensured at the Department of Computer Technology of Ternopil V. Hnatiuk National Pedagogical University via connection to a computer located in a classroom of the mentioned educational institution. The procedure was provided by a remote access system. The desktop of the above mentioned computer presents the reflection of the robot from two angles. Also, it shows the environment for writing and compilation of the programming language C++ which will be used for programming of robot. After compilation of the code, a user will immediately have the opportunity to check the result of the code in action. A remote workplace was organized in this way enabling students to connect to it in order to do the laboratory tasks, and observe the results of their work with the help of video conferencing tools.

References

Биков В. Ю. Моделі організаційних систем відкритої освіти: монографія. Київ: Атіка, 2009. 684 с.

Бондар В., Шапошнікова, І. Адаптивне навчання студентів як передумова реалізації компетентнісного підходу до професійної підготовки вчителя. Рідна школа. 2013. Ч. 11. С. 36–41.

Бондарук В. В. Використання віртуальних навчальних середовищ при вивченні робототехніки. Збірник наукових праць Кам’янець-Подільського національного університету імені Івана Огієнка. Серія педагогічна. 2019. Вип. 25. С. 120–123.

Дем’яненко В. Б., Дем’яненко В. М. Комп’ютерні засади відкритих системи адаптивного навчання. Адаптивне управління: теорія і практика. Педагогіка. 2018. 4 (7). URL: https://lib.iitta.gov.ua/714639/1/COMPUTER%20BASICS%20OPEN%20SYSTEM%20ADAPTIVE%20LEARNING.pdf

Дерман Д. Технологія освітньої робототехніки. Матеріали ІІ Міжнародної студентської науково-технічної конференції «Природничі та гуманітарні науки. Актуальні питання». 2019. С. 97–98.

Здолбіцька Н., Костючко С., Ковальчук П., Пащук В. Система керування роботом-маніпулятором. Computer-integrated technologies: education, science, production. 2020. 40. Р. 37–43.

Конофольська В. Використання інтернет-сервісів під час навчання робототехніки в умовах дистанційного навчання. Інформаційно-комунікаційні технології в освіті. 2021. 8. URL: https://www.e-journals.npu.edu.ua/index.php/ikt/article/view/222/319

Морзе Н., Струтинська О., Умрик М. Освітня робототехніка як перспективний напрям розвитку STEM-освіти. Електронне наукове фахове видання «Відкрите освітнє е-середовище сучасного університету», 2018. 5. С. 178–187.

Цідило І. М., Козіброда С. В. Модель системи підготовки майбутніх інженерів-педагогів у галузі комп’ютерних технологій до вивчення та застосування онтологій комп’ютерних систем. Оновлення змісту, форм та методів навчання і виховання в закладах освіти: Наукові записки Рівненського державного гуманітарного університету. 2017. Вип. 16 (59). С. 154–158.

Carter Jr., Richard Al., et al. Self-regulated learning in online learning environments: strategies for remote learning. Information and Learning Sciences. 2020. URL: https://www.emerald.com/insight/content/doi/10.1108/ILS-04-2020-0114/full/html

Hehir E., Zeller M., Luckhurst J., Chandler T. Developing student connectedness under remote learning using digital resources: A systematic review. Education and Information Technologies. 2021. 26 (5). Р. 6531–6548.

Kuong H. C. Enhancing online learning experience: From learners’ perspective. Procedia-Social and Behavioral Sciences. 2015. 191. Р. 1002–1005.

Laux D., Luse A., Mennecke B. E. Collaboration, connectedness, and community: An examination of the factors infuencing student persistence in virtual communities. Computers in Human Behavior. 2016. 57. Р. 452–464.

Mavengere N., Henriksen-Bulmer J., Passmore D., Mayes H., Fakorede O., Coles M., Atfield-Cutts S. Applying innovative technologies and practices in the rapid shift to remote learning. Communications of the Association for Information Systems. 2021. 48. URL:

https://eprints.bournemouth.ac.uk/35044/3/Mavengere%5EJ%20Nicholas%20Blessing%20et%20al%20%28forthcoming%29%20%20Applying%20Innovative%20Technologies%20and%20Practices%20in%20the%20Rapid%20Shift%20to%20Remote%20Le.pdf

Schultz R. B., DeMers M. N.. Transitioning from emergency remote learning to deep online learning experiences in geography education. Journal of Geography. 2020. 119 (5). Р. 142–146.

Stone C., Springer M. Interactivity, connectedness and ’teacher-presence’: Engaging and retaining students online. Australian Journal of Adult Learning. 2019. 59 (2). Р. 146–169.

Taguchi N. Digitally mediated remote learning of pragmatics. Foreign Language Annals. 2020. 53 (2). Р. 353–358.

Toquero C. M. Emergency remote education experiment amid COVID-19 pandemic. IJERI: International Journal of Educational Research and Innovation. 2021. 15. Р. 162–176.

Published

2022-11-30